

GSiC140: 0.14 μm GaN HEMT – Foundry Process

The GSiC140 process is a 0.14 μm gate length GaN-on-SiC process which utilizes E-Beam lithography for gate formation. The T-gate process features a high performance depletion mode GaN HEMT FET on a 100 μm thick SiC substrate with through VIA holes. Passives include three stackable metal layers with a total thickness of 6.46 μm , NiCr thin film and EPI (bulk) resistors, and MIM capacitors for full MMIC integration.

This highly competitive process is ideal for both commercial and defense applications from X-Band to Ka-Band.

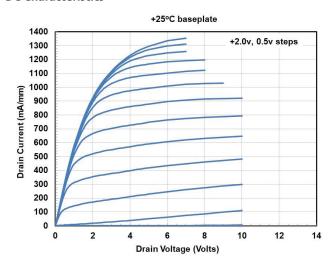
FEATURES

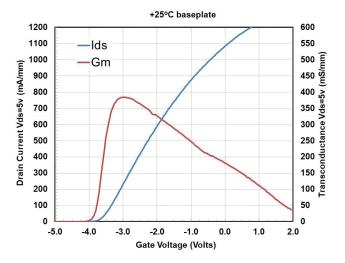
- 3 Stackable Metal Layers (0.96 μm, 2.35 μm, 3.15 μm), Total Thickness: 6.46 μm
- Backside VIA: 30 x 60 μm Oval VIAs
- Final Wafer Thickness: 100 μm
- Switch FET and ESD Diodes Available
- Thin Film and Bulk Resistors
- CAP and CAP on VIA Options

APPLICATIONS

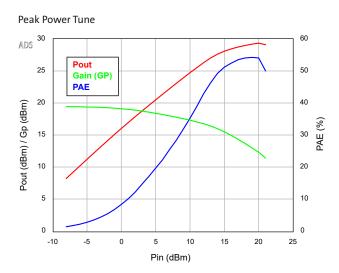
- X-Band to K-Band
- High Power Amplifiers
- High Power Switches
- Low Noise Amplifiers
- Integrated Front End MMIC

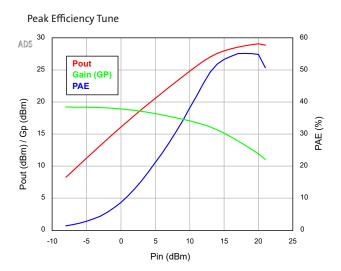
GSiC140: 0.14 µm GaN HEMT — Foundry Process (continued)


KEY PROCESS PARAMETERS


Parameter	Nominal Value
Max Drain Voltage	25 V
Pinchoff Voltage ($V_{DS} = 6$, $I_{DS} = 1mA/mm$)	-3.8 V
$I_{DSS}(V_{GS} = 0 \text{ V}, V_{DS} = 6 \text{ V})$	960 mA/mm
I_{MAX} ($I_{GS} = 1mA/mm$, $V_{DS} = 6 V$)	1300 mA/mm
Power Density	5 W/mm @ 35 GHz
Cutoff Frequency, f_T ($I_{DS} = 100 \text{ mA/mm}$, $V_{DS} = 20 \text{ V}$)	>55 GHz
Transconductance, g_m ($I_{DS} = 50\% I_{DSS}$, $V_{DS} = 6 V$)	375 mS/mm
Breakdown (Gate-drain, 1 mA/mm)	<-50 V
MIM Capacitance per Area	300 pF/mm²
Bulk (EPI) Resistor	300 Ω/sq
Thin Film (NiCr) Resistor	12.5 Ω/sq

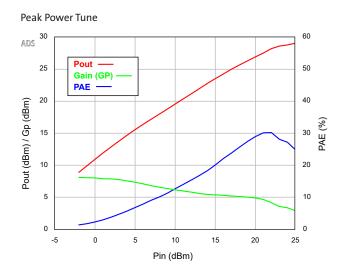
GSiC140: 0.14 µm GaN HEMT – Foundry Process (continued)

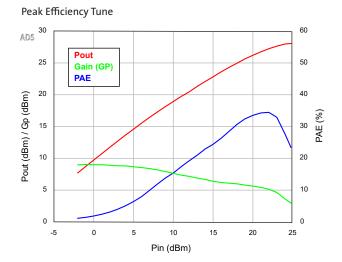

Typical Performance Curves DC Characteristics



Typical Performance Curves Load Pull (2 x 100 μm FET)

10 GHz ($V_{DS} = 25 \text{ V}, I_{DSQ} = 100 \text{ mA/mm}$)





GSiC140: 0.14 μm GaN HEMT – Foundry Process (continued)

Typical Performance Curves Load Pull (2 x 100 μm FET)

30 GHz ($V_{DS} = 25 \text{ V}, I_{DSQ} = 100 \text{ mA/mm}$)

